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Abstract

Quantitative structure–activity relationship (QSAR) models of inhibiting action of some diarylimidazole derivatives on cyl-
cooxygenase (COX) enzyme were constructed using modified particle swarm optimization (PSO) method. As a comparison to
this method, the genetic algorithm (GA) was also tested. It has been demonstrated that the modified PSO is a useful tool for
variable selection comparable to GA and even superior to GA. QSAR models are constructed separately for COX-2 inhibitory
activity and selectivity of COX-2 inhibition over COX-1. The spatial descriptors play a key role in the compounds’ activity and
selectivity to COX-2, especially Jurs descriptors. Polar interactions are the principal binding strength between compounds and
COX-2 enzyme. In addition, the aqueous desolvation free energy (FH2O) value of substituent will affect the COX-2 inhibitory
activity, while the charge distribution can affect the selectivity to COX-2.
© 2004 Published by Elsevier B.V.
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1. Introduction

Cyclooxygenase (COX) performs the first step in
the creation of prostaglandins from a common fatty
acid, arachidonic acid[1,2]. It adds two oxygen
molecules to arachidonic acid, initiating a set of re-
actions that will ultimately create a host of unusual
molecules. Two distinct isoforms have been identified
separately termed COX-1 and COX-2[3]. COX-1 is
a constitutive enzyme in most mammalian tissues and
is responsible for keeping the stomach lining intact
and maintaining functional kidneys. However, COX-2
is expressed only after an inflammatory stimulus,
releasing metabolites that are used to induce inflam-
mation and pain[4–6]. During normal physiology

0731-7085/$ – see front matter © 2004 Published by Elsevier B.V.
doi:10.1016/j.jpba.2004.02.026



680 J.-X. Lü et al. / Journal of Pharmaceutical and Biomedical Analysis 35 (2004) 679–687

COX-2 levels are undetectable in most tissues. During
periods of acute and chronic inflammation, the level
of COX-2 is very often significantly higher.

Non-steriodal anti-inflammatory drugs, for exam-
ple, aspirin, can block the binding of arachidonic acid
in the COX active site. The normal messages are not
delivered, so people do not feel the pain and not launch
an inflammatory response. Hence, this kind of drugs,
as COX inhibitors, is widely utilized agents for the
treatment of inflammation, pain, and fever. However,
the chronic usage of these drugs has been associated
to the induction of gastrointestinal mucosal lesions,
perforations, and bleeding in part of the population
[7]. Decreased renal functions have been observed in
some patients[8]. The reason is that these COX in-
hibitors also inhibit COX-1 to produce the necessary
prostaglandins. The association of COX-2 with inflam-
mation led to the designing of the selective COX-2
inhibitors which block the prostaglandin’s production
in inflammatory cells while not interfering with the
homeostatic (COX-1) production of prostaglandins in
the gastrointestinal tract[9–12]. One could not, how-
ever, confirm that the compounds designed would al-
ways possess good selectivity to COX-2, while the
synthesis and testing of these compounds on human
COX-1 and -2 enzymes are time-consuming and ex-
pensive. Consequently, it is of interest to develop a
prediction method for biological activities before the
synthesis. Quantitative structure–activity relationship
(QSAR) models have been built using the experimen-
tal data accumulated[13]. Using such an approach
one could predict the activities of newly designed
compounds before a decision is being made whether
these compounds should be really synthesized and
tested.

Building a QSAR model begins with collecting ex-
perimental data and calculating theoretical parameters
for the compounds involved. The experimental infor-
mation may associate with biological properties, such
as activity, toxicity or bioavailability, which is taken
as dependent variable in building a model. The param-
eters to be calculated are numerous descriptors that
are indicative of molecular structures. Since hundreds
of molecular descriptors are available for QSAR anal-
ysis and only a part of them is statistically significant
in terms of correlation with biological activity for a
particular analysis, variable selection is necessary for
producing a useful predictive model. There have been

many variable selection methods exist, the mostly
used ones are stepwise regression, simulated anneal-
ing, evolutionary algorithms and genetic algorithms
(GAs) and so on. Here, particle swarm optimization
(PSO) algorithms introduced to chemometrics by
present authors were used to perform the variable se-
lection [14]. Particle swarm optimization is an evolu-
tionary computation technique developed by Kennedy
and Eberhart[15], by simulating social behavior of
bird flocking or fish schooling. Similar to GA, PSO is
a population based optimization tool. The system is
initialized with a population of random solutions, and
searches for optima by updating generations. Unlike
GA, PSO has no evolution operators such as crossover
and mutation. In PSO, the potential solutions, called
particles, are “flown” through the problem space by
following the current optimum particles. Compared
to GA, the advantages of PSO are that PSO is easy
to implement and there are few parameters to adjust.

Multiple linear regression (MLR) techniques are
used for building QSAR models rather than other
methods such as factor analysis or principle compo-
nents regression, for the ease of MLR implementation
and the interpretability of the resulting equations. In
the present work, we employed modified PSO al-
gorithm for variable selection in MLR analysis and
compared it to GA. It has been demonstrated that
the modified PSO is a useful tool for variable se-
lection comparable to GA and even superior to GA.
QSAR models are constructed separately for COX-2
inhibitory activity and COX-2 selectivity. As far as
we are aware, this is the first QSAR study using a
hybrid method to predict the compounds’ selectivity
to COX-2.

2. Algorithms and data sets

2.1. Particle swarm optimization

Particle swarm optimization (PSO) involves sim-
ulating social behavior among individuals (particles)
“flying” through a multi-dimensional search space,
each particle keeps track of its coordinates in the prob-
lem space which are associated with the best solu-
tion (fitness) it has achieved so far. The first step of
the algorithm is to randomly initialize the position
and velocity of each particle in the swarm, dispersing
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them uniformly across the search space. Theith parti-
cle is represented asxi = (xi1, xi2, . . . , xid). Velocity,
the rate of the position change for particlei is repre-
sented asνi = (νi1, νi2, . . . , νid). PSO posits that par-
ticles should move toward some combination of their
personal best position and the global best position.
The personal best positionpi = (pi1, pi2, . . . , pid)

is the best previous position of theith particle that
gives the best fitness value. The global best position
p = (pg1, pg2, . . . , pgd) is the best particle among
all the particles in the population. Therefore, all of
the data required to update the particle positions for
each iteration can stored in fourM × N matrices,
where M is the number of particles in the simula-
tion andN is the number of dimensions of the prob-
lem. The position and velocity of each particle is up-
dated at discrete intervals according to the following
equation:

vid = vid + c1r1(pid − xid) + c2r2(pgd − xid) (1)

wherec1 andc2 are two positive constants named as
learning factors,r1 and r2 are uniform random vari-
ables in the range of (0, 1). The three terms of this
expression are the initial velocity of the particle at the
beginning of the iteration, and the distance of the parti-
cle from the personal and global best positions. Hence,
the particle velocities are likely to be large in the early
stages of the optimization and will become substan-
tially smaller as the swarm converges to the optimum.
Finally, for each dimension, the particles move in the
direction specified by the velocity matrix according to
a simple relationship given by

xid = xid + vid (2)

Such an adjustment of the particle’s movement
through the space causes it to search around the two
best positions. If the minimum error criterion is at-
tained or the number of cycles reaches a user-defined
limit, the algorithm is terminated.

In past several years, PSO has been successfully
applied in many research and application areas, such
as analysis of human tremor[16], controlling reactive
power and voltage[17], distribution state estimation
[18] and so on. It is demonstrated that PSO gets better
results in a faster, cheaper way compared with other
methods.

2.2. Modified particle swarm optimization

In PSO, only best positions give out the information
to others; while in GAs, chromosomes share informa-
tion with each other. As information sharing mecha-
nism in PSO is significantly different from GAs, all the
particles tend to converge to the best solution quickly.
But the disadvantage of PSO is easily getting into lo-
cal optima. According to information sharing mecha-
nism of PSO, a modified PSO for variable selection
is proposed as follows. The velocityvid of each indi-
vidual is a random number in the range of (0,1). The
resulting change in position then is defined by the fol-
lowing rule:

If 0 < vid ≤ a, thenxid (new) = xid (old) (3)

If a < vid ≤ 1
2(1 + a), thenxid = pid (4)

If 1
2(1 + a) < vid ≤ 1, thenxid = pgd (5)

wherea is a random value in the range of (0,1) named
static probability. The initial value ofa is 0.5.

Though the velocity in the modified PSO is dif-
ferent from that in continuous version of PSO, in-
formation sharing mechanism and updating model
of particle by following the two best positions is the
same in two PSO versions. Some elements inxi are
kept fixed according toEq. (3) which is similar to
the first term of the right side ofEq. (1). Without this
part, the “flying” particle are only determined by their
best positions in history, and all particles would tend
to move toward the same position resembling a local
search. In this sense,Eq. (3) really provides the par-
ticles a tendency to expand the search space.Eqs. (4)
and (5)are similar to the second and third terms of
the right side ofEq. (1). Without these two parts, the
particles would keep on “flying” randomly and PSO
would not be able to find a meaningful solution. Even
so, preliminary experiments indicate that such a PSO
version still tends to converge to local optima. To
circumvent this drawback and improve the ability of
the modified PSO algorithm to overleap local optima,
ten percent of particles are forced to fly randomly not
following the two best particles.

Using decreasing static probability and defined per-
cent of randomly flying particle to overleap local op-
tima, the modified PSO remains having satisfactory
converging characteristics.
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2.3. Fitness function

In the modified PSO, the performance of each parti-
cle is measured according to a pre-defined fitness func-
tion. The modifiedCp statistic as an objective function
is applied to variable selection in the modified PSO.
The modifiedCp in MLR is expressed as follows

Cp1(p) = RSSp

σ̂2
PLS

− (n − 2p) (6)

Here, n is the number of dependent variables, and
p is the number of independent variables. RSSp is
the residual sum of the squares ofp-variable model,
σ̂2

PLSis defined as the value of RSS corresponding to
the minimum number of principal components when
further increase of the number of principal components
does not cause a significant reduction in RSS. The
details of modifiedCp have been described elsewhere
[19].

2.4. Data sets

Forty-two 1,2-diarylimidazole derivatives with the
corresponding inhibitory activities were used as a data
set for variable selection and QSAR analysis. The
chemical structures and inhibitory activity of them are
shown inTable 1. The activity is expressed as IC50,
the molar concentration of the compound causing 50%
inhibition of enzyme. We randomly divided the data
taken from the study by Khanna et al.[13] into two
subsets, a training set of 34 compounds, and a predict-
ing set of eight compounds.

Over 100 descriptors were calculated, which en-
coded different aspects of the molecular structure and
consists of electronic, thermodynamic, spatial, and
structural descriptors. The descriptor analysis involves
the detection and removal of those structural descrip-
tors which exhibit high pair-wise correlations with
other descriptors, or which contain little discrimina-
tory information. Pairs of descriptors that are highly
correlated (r ≥ 0.950) encoded similar information,
and one of them should be removed. Descriptors that
contain a high percentage (≥90%) of identical values
are also discarded. Thus, only 85 of total descriptors
were remained which were listed inTable 2.

All these molecular descriptors were generated us-
ing Cerius23.5 software on Silicon Graphics R3000
workstation. The modified PSO, GAs and MLR algo-

rithms were written in Matlab 5.3 and run on a per-
sonal computer.

3. Results and discussions

3.1. Variable selection and QSAR analysis on COX-2
inhibitory activity

For the selection of the most important descrip-
tors the modified PSO was used, which contained a
population of 100 individuals and evolved for 100
generations. Then the selected descriptors were taken
as independent variables to build QSAR models with
MLR method (PSO–MLR). The names of selected
descriptors by modified PSO and statistical param-
eters obtained by these models for the training and
prediction set are shown inTable 3. The best model
with the lowestCp (fitness) value includes four de-
scriptors and the second best one includes three
descriptors. Comparing to the modified PSO, GAs
were used for variable selection and the number of
selected descriptors was four and three, respectively.
The selected descriptors were also used for con-
structing QSAR models (GA–MLR) and we obtained
the statistical results (Table 3). It can be seen from
this table that although the number of descriptors in
these models are identical but they differ from each
other. The correlation coefficient of training set ob-
tained by PSO–MLR is lower than that obtained by
GA–MLR, but the correlation coefficient of predic-
tion set is increased. Also, these results reveal that in
this QSAR study PSO–MLR is superior to GA–MLR
in predictive ability. The calculated activity values
using PSO–MLR method are listed inTable 1. In the
case of PSO–MLR, the relative standard deviation
between the calculated and experimental values for
training and predicting set are 26.44 and 32.44%, re-
spectively.Fig. 1 shows the relationship between the
experimental and calculated values using PSO–MLR.

The descriptors selected by modified PSO are
Jurs-PNSA-2, Jurs-RPCG, shadow-Xlength andFH2O.
These descriptors encode different aspects of the
molecular structure. Jurs-PNSA-2 is the total charge
weighted negative surface area: partial negative
solvent-accessible surface area multiplied by the total
negative charge. Jurs-RPCG is the relative positive
charge: charge of the most positive atom divided by
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Table 1
Data set and corresponding observed and calculated properties of compounds

Compound X Y ln(1/IC50) (COX-2) Selectivitya (COX-1/COX-2)

Experimental Calculated Experimental Calculated

1 4Cl Me 2.2073 2.7205 5.3471 6.2112
2 4F Me 2.3026 2.1018 5.8861 6.7927
3 H Me 2.1203 1.2760 8.7037 7.5328
4b 4Me Me 1.8326 0.8649 5.0752 5.3631
5 4Ome Me 0.5621 0.8694 1.6094 3.8499
6 4NHMe Me −0.3853 0.4273 3.5835 2.9795
7 4NMe2 Me 0.3567 0.0676 1.9459 1.3844
8b 4Sme Me 1.8326 1.7820 2.5649 3.4144
9 4Cl NH2 4.6052 4.6400 5.0752 4.7916

10 4F NH2 4.6052 3.8932 5.2470 5.5540
11 H NH2 3.2189 3.0949 6.1779 5.6658
12 4Me NH2 3.2189 2.5339 4.7449 3.5683
13 3Cl Me 2.8134 2.9992 8.6995 7.7633
14b 3Me Me 2.8134 0.8434 7.3132 7.1684
15 3NMe2 Me −1.1632 0.0461 2.5649 3.9105
16 3Cl NH2 4.8283 4.6616 6.6529 7.0941
17 3F NH2 3.5066 3.8136 7.7187 7.0709
18b 3Br NH2 4.9618 4.8319 6.4615 7.0596
19b 3Me NH2 3.5066 2.6348 4.6634 4.7095
20 2Me Me 0.2231 0.8574 6.5793 6.7143
21 2F NH2 2.3026 3.6323 5.4072 5.7699
22 2Me NH2 1.6094 2.6065 3.7136 5.2308
23 3F-4Ome Me 1.8971 1.6641 5.7900 5.6203
24 3Cl-4OMe Me 2.0402 1.7800 7.7319 5.0407
25b 3Cl-4NMe2 Me 1.1394 1.2258 1.6094 3.9972
26 3F-4Nme2 Me 1.1087 0.4564 3.9512 4.2758
27 3Cl-4Me Me 3.5066 2.5603 5.9915 6.4278
28 3Me-4F Me 1.7720 1.8522 4.9558 6.0488
29 3Me-4Cl Me 2.4079 2.4817 4.4659 5.3624
30b 3,4-OCH2O– Me 1.7720 1.4121 4.2627 4.3785
31 3,4-Me2 Me 1.1087 0.6218 4.5109 3.8987
32 3F-4Ome NH2 3.5066 3.1142 4.8442 5.5771
33 3Cl-4Ome NH2 3.9120 3.6392 5.6699 5.5685
34 3Br-4Ome NH2 3.5066 4.0746 4.5109 5.2185
35b 3Cl-4Sme NH2 4.6052 4.3285 3.5553 4.1895
36 3Cl-4Me NH2 5.8091 4.2298 5.2470 5.3642
37 3Ome-4Cl NH2 3.9120 4.0156 6.0638 5.8041
38 3,4-F2 NH2 3.5066 3.9583 6.9007 6.8380
39 3Me-5F NH2 3.5066 2.8032 7.9121 6.3701
40 3,5-Me2-4Ome Me 0.3285 −0.0926 4.8363 3.8500
41 3,5-F2-4Ome NH2 3.5066 4.3655 7.0622 7.1132
42 4Cl Me 2.2073 2.7097 5.3428 5.1819

a Selectivity is expressed as natural logarithm of IC50(COX-1)/IC50(COX-2).
b The compounds used for prediction.
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Table 2
The descriptors used for selection in this study

Functional families of descriptors Descriptors

Conformational descriptors Energy
Electronic descriptors Apo1 (sum of atomic polarizabilities), dipole (dipole moment, including dipole-mag, dipole-X,

dipole-Y, dipole-Z), HOMO (highest occupied molecular orbital energy), LUMO (lowest unoccupied
molecular orbital energy), Sr (superdelocalizability)

Spatial descriptors Rad of gyration (radius of gyration), Jurs descriptors (Jurs charged partial surface area descriptors),
shadow indices (surface area projections), area (molecular surface area), density, PMI (principal
moment of inertia, including PMI-mag, PMI-X, PMI-Y, PMI-Z), Vm (molecular volume)

Structural descriptors MW (molecular weight), rotlbonds (number of rotatable bonds), Hbond acceptor (number of
hydrogen bond acceptors), Hbond donor (number of hydrogen bond donors)

Thermodynamic descriptors A logP (log of the partition coefficient),FH2O (desolvation free energy for water),Foct (desolvation
free energy for octanol), mol ref (molar refractivity)

E-state index SsCH3, S ssCH2, S aaCH, SaasC, SssssC, SsNH2, S aaN, SaasN, SdO, SssO, SssS, SddssS,
S sF, SsCl

the total positive charge. It can be seen fromTable 3
that Jurs descriptors play the most important roles in
COX-2 inhibitory activity. Jurs descriptors (charged
partial surface area descriptors) encode features re-
sponsible for polar interactions between molecules
[20]. This set of descriptors, combining shape and
electronic information to characterize the molecules,
are calculated by mapping atomic partial charges on
solvent-accessible surface areas of individual atoms.
Therefore, one can infer that the intermolecular inter-

Table 3
Selected descriptors used for MLR analysis and the statistical
results in COX-2 inhibitory activity QSAR study

Descriptors Coefficientsa Rt
b Rp

b

PSO–MLR Jurs-PNSA-2 −0.0064 0.9209 0.8815
Jurs-RPCG 67.8020
Shadow-Xlength −1.7280
FH2O −0.0055

GA–MLR Jurs-DPSA-3 0.1855 0.9569 0.8395
Jurs-FNSA-1 −28.4062
Jurs-RPCG 120.7818
S sNH2 0.3924

PSO–MLR Jurs-FPSA-3 −89.2982 0.9108 0.9000
Jurs-RASA −10.7658
S sNH2 0.2822

GA–MLR Jurs-FPSA-3 251.8937 0.9380 0.8505
Jurs-WNSA-3 −0.2200
Jurs-RPCG 127.7156

a The corresponding coefficient of descriptor in the regression
equation.

b R, correlation coefficient, t is for training set, p is for predic-
tion set.

actions play key roles in inhibiting COX-2 enzyme.
Shadow-Xlength belongs to shadow indices descrip-
tors. This set of descriptors helps to characterize the
shape of the molecules[21]. They are calculated by
projecting the molecular surface on three mutually
perpendicular planes,XY, YZ, andXZ. They depend
not only on conformation but also on the orienta-
tion of the molecule. Among them shadow-Xlength
is the length of molecule in theX dimension. Its
negative coefficient accounts for why the length of
X substituents at the second position of phenyl ring
is detrimental to activity. The above three descrip-
tors all belong to structural descriptors.FH2O, the
aqueous desolvation free energy, is physiochemical
properties associated with linear free energy models

Fig. 1. Calculated vs. experimental ln 1/IC50 values using
PSO–MLR method.
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Fig. 2. Calculated vs. experimental selectivity values using
PSO–MLR method.

of a molecule. QSAR calculatesFH2O for each
molecule by searching the molecule for recogniz-
able substituent groups and their bonding patterns,
and summing the substituent constants contributions
for each group that is present in the molecule. The
negative coefficient shows that the smaller the value
of FH2O, the higher the activity. It is apparent that
the substituent of amido is benefit while methyl is
detrimental to activity. This is because the value of
FH2O of amido is negative while that of methyl is
positive.

3.2. Variable selection and QSAR analysis on the
selectivity to COX-2

The relationship between the COX-2 inhibitory ac-
tivity and the molecule structures (properties) has been
studied. But only considering this point is not suffi-
cient because at the same time the COX-1 inhibitory
activity is perhaps also enhanced, which will lead to
a series of unpleasant effects. Hence, the relation-
ship between selectivity and the molecular structures
(properties) should be built so as to design more rea-
sonable drugs. The variables were selected separately
using PSO–MLR and GA–MLR. With the selected
variables, QSAR models have been constructed and
some results are shown inTable 4. The calculated
values of the best model are listed inTable 1. The rel-
ative standard deviation of training set and predictive
set is 17.67 and 23.01%, respectively.Fig. 2 shows

Table 4
Selected descriptors used for MLR analysis and the statistical
results in COX-2 selectivity QSAR study

Descriptors Coefficienta Rt
b Rp

b

PSO–MLR Jurs-FPSA-1 102.0326 0.8231 0.9263
Jurs-FNSA-1 −24.7637
Jurs-RPCG 221.8227
Jurs-RNCG 118.1285
Shadow-XZfrac −29.0363
PMI-mag −0.0041

PSO–MLR Dipole-Y 0.2097 0.8297 0.8287
Jurs-PNSA-1 −0.0567
Jurs-FNSA-2 −11.4841
Jurs-RPCG 64.7096
Jurs-RNCG 148.3189
Shadow-XZfrac −23.8165

GA–MLR Radius of gyration 11.8726 0.8587 0.8040
Jurs-PNSA-2 −0.0499
Jurs-WNSA-1 −0.3468
Jurs-RPCG 328.2977
Shadow-XZfrac −33.9385
Shadow-nu −0.8533

a The corresponding coefficient of descriptor in the regression
equation.

b R, correlation coefficient, t is for training set, p is for predic-
tion set.

the relationship of the calculated and experimental
values.

The selected variables of the best model are
Jurs-FPSA-1, Jurs-FNSA-1, Jurs-RPCG, Jurs-RNCG,
shadow-XZfrac, and PMI-mag. These descriptors all
belong to spatial descriptors, so the spatial descriptors
are the most important factors in the selectivity of in-
hibition. Jurs-FPSA-1 and Jurs-FNSA-1 are fractional
charged partial surface areas. Jurs-FPSA-1 is obtained
by dividing sum of the solvent-accessible surface ar-
eas of all positively-charged atoms by the total molec-
ular solvent-accessible surface area. Jurs-FNSA-1 is
obtained by dividing total charge weighted negative
surface area by the total molecular solvent-accessible
surface area. Total charge weighted negative surface
area is partial negative solvent-accessible surface area
multiplied by the total negative charge. Jurs-RNCG
is relative negative charge: charge of most negative
atom divided by the total negative charge. In terms of
their coefficients inTable 4, a conclusion can be de-
duced that the selectivity increased with the increased
relative charge. The charge distribution within the
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molecules acts as the driving force for intermolecu-
lar interactions and the more the relative charge the
larger the interactions. Shadow-XZfrac is fraction of
area of molecular shadow in theXZ plane over area
of enclosing rectangle. Its coefficient being negative
shows that the selectivity increased with the decreased
value of shadow-XZfrac. That is to say the smaller
area of molecular shadow in the enclosing rectangle
will benefit the selectivity. PMI-mag is to calculate
the principal moments of inertia about the principal
axes of a molecule. Through other several models we
found the spatial descriptors indeed play the key roles
in the compounds’ activity and selectivity to COX-2,
especially Jurs descriptors. All models include several
Jurs descriptors, which indicate that polar interactions
between molecules are the principal interactions. The
strength of these interactions was considered to be a
function of contacting area between molecules. Also,
the charge distribution within the molecules acts as
the driving force for these interactions.

4. Conclusions

The modified PSO algorithm has been employed in
variable selection and sastifactory results have been
obtained. In the selected descriptors, Jurs descriptors
are the most important descriptors both in predicting
COX-2 inhibitory activity and in COX-2 selectivity.
Therefore, one can infer that polar interactions are
the principal binding strength between compounds
and COX-2 enzyme. In addition, theFH2O value of
substituent will affect the COX-2 inhibitory activity,
while the charge distribution can affect the selectivity
to COX-2.

QSAR models were constructed with selected vari-
ables to predict new compounds’ activity. The results
suggest that a small number of chemically meaningful
descriptors will provide the most predictive QSAR
model. The modified PSO has been testified to be an
effective method for variable selection comparable to
GA.
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